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Abstract. In certain fluid-dynamical systems sufficient materially conserved quantities (MCQs)
can be found for the construction of a first integral of the system. The first integral is formed by
functionally relating the MCQs. Such integrals simplify construction of solutions of the systems
greatly, though determination of the function relating the MCQs can be problematic. It is often
prescribed. Here we consider generalizations of such systems, for example diffusion is added.
Results indicate that whilst MCQs exist for some such perturbations these are rare. We therefore
suggest an alternative approach for constructing solution ansätze: an ansatz is made based upon
that for the unperturbed system but in which the function relating the MCQs changes ‘slowly’
with each independent variable. Particular examples are considered for the two-dimensional Euler
equations and for the equations describing large-scale, steady flow of a thin layer of fluid on the
surface of a rotating sphere at mid latitudes (applicable to ocean dynamics). In each case, as a
result of the ansatz we find equations which, given appropriate boundary conditions, determine the
relating-function.

1. Introduction

A materially conserved quantity (MCQ) of a fluid-dynamical system is defined as any quantity
q satisfying

Dq

Dt
≡ ∂q

∂t
+ ui

∂q

∂xi
= 0 (1.1)

for example in the case of Cartesian coordinates in three dimensions,

∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
+w

∂q

∂z
= 0 (1.2)

whereu = (u, v,w) is the velocity vield, foranyflow satisfying the corresponding governing
equations. Recently Hood (1998) showed how one may systematically determine such MCQs
of some fluid-dynamical systems. These MCQs can be used to construct quite general, exact,
analytical solutions of the corresponding equations: givenn MCQs of a system of PDEs inn
independent variables the MCQs are necessarily functionally related. These relations—first
integrals of the system—take the form of differential equations which are (usually) significantly
simpler than the given (governing) equations and so may be considered as solution ansätze for
the system. Here we study what happens when the equations are perturbed by the introduction
of, say, diffusion. Can modified MCQs be constructed? Or can one modify the solution ansätze
in some way so that the original MCQs may still be used, albeit in an approximate rather than
exact method? It turns out that the latter approach is the more fruitful.
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We focus our attention on two fluid systems. First, the two-dimensional (2D) Euler
equations,

uux + vuy = −px
uvx + vvy = −py

(1.3)

in whichu = (u, v) is the velocity field andp is pressure, which describe steady fluid flow in
the limit in which viscosity is zero. It is well known (e.g., Batchelor 1967) that (1.3) satisfy
two material conservation laws: both the stream function,ψ , defined by

(u, v) = (−ψy,ψx) (1.4)

and vorticity,ω, defined by

ω = −ψxx − ψyy (1.5)

are materially conserved, and since we have two MCQs and a 2D system then a first integral
of (1.3) is

ω = F(ψ) (1.6)

whereF is arbitrary. Any solution of (1.6), for anyF , is a solution of the 2D-Euler equations,
(1.3). GivenF one can solve (1.6) forψ and hence obtain the velocity and pressure fields. But
what isF? (It cannot always be determined by far-field, e.g., upstream, boundary conditions.)

Secondly, we consider the equations describing large-scale, steady flow of a thin layer of
fluid on the surface of a rotating sphere at mid latitudes. (See, for example, the classic papers by
Robinson and Stommel (1959) and Welander (1959, 1971); see also Needler (1971), and more
recently Hood and Williams (1996) and references therein.) The primitive equations describing
ocean dynamics are the compressible Navier–Stokes equations in a rotating reference frame,
a conservation of mass equation and an equation of state. At mid latitudes scaling analysis
suggests (e.g., Pedlosky 1986) that the simplest model one might use is

u = −py
y

v = px

y
ρ = pz ux + vy +wz = 0 (1.7a)

with

uρx + vρy +wρz = 0 (1.7b)

whereu,v andw are the components of the velocity field in thex,y andzdirections respectively,
ρ is density, andp is pressure. (The first two equations show a counter-intuitive balance
between gradients of the pressure field and the velocity field; the third equation represents
hydrostatic balance, the fourth is continuity and the final equation represents advection of the
density field by the velocity field.) These are often called thethermocline equations.

It is useful to rewrite the thermocline equations in terms of a potential,M(x, y, z)

(Welander, 1959), namely,

MxMzzz + y(MxzMyzz −MyzMxzz) = 0 (1.8a)

u = −Myz

y
v = Mxz

y
w = Mx

y2
p = Mz ρ = Mzz. (1.8b)

This format was used by Hood (1998) in which a systematic method was described for
computing materially conserved quantities of continuum dynamical systems. (1.7) admits
three materially conserved quantities and in terms ofM these are

ρ = Mzz B = Mz − zMzz and q = yMzzz (1.9)

density, the Bernoulli functional and potential vorticity, respectively. (Conservation ofB can
be thought of as conservation of energy by each fluid parcel; the role and significance of
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potential vorticity is described by many texts on geophysical fluid dynamics, e.g., Pedlosky
(1986).)

In general density is a monotonically increasing function of depth within the ocean (this
not true everywhere). Assuming this, one can chooseρ as the ‘vertical’ independent variable
and choosingB as the dependent variable one can then write the equations in a particularly
simple form:

yu = −By yv = Bx z = Bρ w = uzx + vzy
(uzρ)x + (vzρ)y = 0 (1.10a)

together with

y(BxByρρ − ByBxρρ)− BxBρρ = 0. (1.10b)

(Details are given by Janowitz (1986).) Since this representation of the dynamics is simpler
we use it below. (Unfortunately the boundary conditions are now significantly more difficult
to handle e.g., Killworth (1987).) In theseisopycnal coordinatesthe three MCQs are

ρ B q = y

Bρρ
(1.11)

and since we have three MCQs and a 3D system then a first integral of the system (1.10a) and
(1.10b) is

q = Q(B, ρ). (1.12)

GivenQ one has to solve only anordinarydifferential equation forB, from which the velocity
and other fields can be obtained. But what isQ?

In this paper we give an answer to the questions posed above—what areF andQ? First,
in section 2 we look for exact MCQs of perturbations of both the 2D-Euler system and the
ideal thermocline system: results indicate that whilst MCQs exist for some perturbations such
existence is likely to be rare. Motivated by this we adopt a more pragmatic approach in
section 3: we suggest that whilst the addition of diffusion, for example, to a system such as
the 2D-Euler or ideal thermocline equations is singular in our usual coordinates it is regular in
MCQ-space. This leads to the solution ansätze

ω = F(ψ,X, Y ) (1.13)

(cf (1.6)) for the 2D-Euler equations and

q = Q(B, ρ,X, Y ) (1.14)

(cf (1.12)) for the thermocline equations, where

X = δ1x Y = δ2y O(δ1) = O(δ2) = O(κ). (1.15)

Using these ansätze analytical progress is made in three examples. In the first the problem
of nearly inviscid, steady 2D flow within closed streamlines discussed by Batchelor (1956)
is revisited. Batchelor’s result is recovered and, in addition, a correction term suggested.
In the second and third models of the dynamics underlying the (unexpected) very nonlinear
temperature profile in the worlds oceans are investigated. Generalizations of these models are
obtained. In each of these three examples, by means of the solution ansätze given above, we
obtain equations sufficient to determine the unknown function relating the MCQs. In the first
case the function is found explicitly. Finally, the wider significance of the results and possible
generalizations are discussed in section 4.
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Notation. Subscripts are used to denote partial derivatives, for example,Ax denotes thex
partial derivative ofA; A[x] denotes the total derivative, for example, ifA depends on the
independent variables, on a functionψ and on theψ-derivatives then

A[x] ≡ Ax +Aψψx +Aψxψxx + · · · . (1.16)

2. Materially conserved quantities of perturbed systems

In this section we attempt to find quantities which are exactly materially conserved by flows
described by perturbations of the 2D-Euler and ideal thermocline equations. The method used
is systematic and fully described by Hood (1998). Briefly: an ansatz is made, for example in
the context of the 2D-Euler equations,

q = Q(x, y, ψ,ψx, ψy, ψxx, ψxy, ψyy) (2.1)

so thatq is a second-order MCQ—depends at most on second-order derivatives ofψ ; this
is substituted into (1.1) and noting that the result must be satisfiedfor all functionsψ—
which means that distinct derivatives ofψ are independent—leads to constraints onQ which
are solved where possible. Throughout the computation one must take into account the
frameof the governing equations, that is the equations themselves and appropriate differential
consequences.

2.1. The 2D-Euler equations

In this section we seek materially conserved quantities of perturbations of the steady, 2D-Euler
equations, (1.3). These equations describe steady fluid flow at large Reynolds number, i.e.,
when the effects of viscosity may be neglected. In particular we consider the case in which
(small) viscosity effects are reintroduced into the system.

We consider perturbations of the form

uux + vuy = R(x, y, ψ,ψx, ψy, ψxx, . . .) (2.2a)

uvx + vvy = S(x, y, ψ,ψx, ψy, ψxx, . . .) (2.2b)

i.e.,

ψyψxy − ψxψyy = R(x, y, ψ,ψx, ψy, ψxx, . . .) (2.3a)

−ψyψxx +ψxψxy = S(x, y, ψ,ψx, ψy, ψxx, . . .) (2.3b)

in which neitherR nor S are necessarily small and look for quantitiesQ(x, y, ψ,ψx, . . .)
which satisfy (1.1) which in this context becomes

−ψyQ[x] +ψyQ[y] = 0 (2.4)

or, expanding the total derivatives

ψx{Qx +Qψψx +Qψxψxx +Qψyψxy +Qψxxψxxx +Qψxyψxxy
+Qψyyψxyy + · · ·} +ψy

{
Qy +Qψψy +Qψxψxy +Qψyψyy +Qψxxψxxy

+Qψxyψxyy +Qψyyψyyy + · · ·} = 0. (2.5)

Note,ψ is materially conserved foranyperturbation of this form.
Analysis of the general dependence ofR andS on third- (or higher-) order derivatives

of ψ with generalq is not simple! Instead we consider two examples: we focus on MCQs
which depend on derivatives ofψ no higher than second order. Given these restrictions we
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need only consider the part of the frame of (2.3) consisting of the equations themselves and
the first-order derivatives, i.e.,

ψ2
xy +ψyψxxy − ψxxψyy − ψxψxyy = R[x] (2.6a)

ψyψxyy − ψxψyyy = R[y] (2.6b)

ψxψxxy − ψyψxxx = S[x] (2.6c)

ψ2
xy +ψxψxyy − ψyyψxx − ψyψxxy = S[y] (2.6d)

thex andy derivatives of (2.3a), and thex andy derivatives of (2.3b), respectively. In general
we would expect to be able to solve (2.6) for the third-orderψ derivatives in terms of lower
order terms—the uniqueness and existence of such a solution plays a significant rôle in the
search for MCQs—and hence eliminate each from (2.5).

Example 2.1.We suppose that bothR and S are independent of second- and higher-order
derivatives ofψ , i.e., can depend on the velocity field but not its derivatives:

uux + vuy = R(x, y, ψ,ψx, ψy) (2.7a)

uvx + vvy = S(x, y, ψ,ψx, ψy). (2.7b)

In this case (2.6) are not consistent unless

R[x] + S[y] + 2ψxxψyy − 2ψ2
xy = 0. (2.8)

Given (2.8) we can solve (2.6) for (just) three of the third-order derivatives ofψ in terms of the
fourth. We then expect to eliminate these three from (2.5) which would then partition into two
constraints: the coefficient of the fourth third-order derivative ofψ and the remaining terms.
Eliminatingψxxx , ψxxy andψyyy we find

ψx{Qy +Qψxψxy +Qψyψyy}
−ψy{Qx +Qψxψxx +Qψyψxy}
+Qψxx S[x] − (R[x] +ψxxψyy − ψ2

xy)Qψxy −QψyyR[y] = 0. (2.9)

Fortuitously the terms involvingψxyy have cancelled. It remains to solve (2.9) simultaneously
with (2.7a) and (2.7b). GivenR andS any solution of (2.9) yields a second MCQ.

Particular examples are readily constructed. For example:

(a) If R = −px + λv + f (x) andS = −py − λu + g(y), whereλ is an arbitrary constant,
and bothf andg are arbitrary functions, thenω is still a MCQ.

(b) If S = e−x (so that thepy is negligible) thenQ = ψx +ψxx is a second MCQ—R remains
any function ofx, y, ψ , ψx andψy (in particular,px is not required to be negligible).

Example 2.2.We consider the usual parametrization of viscosity:

uux + vuy = −px + ν(uxx + uyy) (2.10a)

uvx + vvy = −py + ν(vxx + vyy) (2.10b)

ν a constant, i.e.,

ψyψxy − ψxψyy = −px − ν(ψxxy +ψyyy) (2.11a)

−ψyψxx +ψxψxy = −py + ν(ψxxx +ψxyy). (2.11b)

Again looking for MCQs which depend upon at most second-order derivatives ofψ then the
appropriate part of the frame of (2.10) is simply the equations themselves. We choose to
eliminateψxxx andψyyy from (2.5) by use of (2.11);ψxxy andψxyy remain, and sinceQ is
independent of each their coefficients must each equal zero. We obtain

−ψyQψxy +ψx(Qψxx −Qψyy ) = 0 (2.12a)

ψy(Qψxx −Qψyy ) +ψxQψxy = 0 (2.12b)
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respectively. From these we find

Qψxy = 0 (2.13)

and

Qψxx = Qψyy . (2.14)

Since we now know thatQ is independent ofψxy the remaining terms split into two parts, the
coefficient ofψxy and the rest, respectively,

−ψy(νQψy +ψxQψxx ) +ψx
(
νQψx − ψyQψyy

) = 0 (2.15a)

−ψy{(Qx +Qψxψxx)ν +Qψxx (py − ψyψxx)}
+ψx{(Qy +Qψyψyy)ν −Qψyy (px +ψxψyy)} = 0. (2.15b)

Consider (2.15b): the only way to eliminate the derivatives ofp is to setQψxx = Qψyy = 0
from which it immediately follows thatQψx = Qψy = 0, and in turn thatQx = Qy = 0. There
is no second MCQ in this case.

We should first take note that example 2.1 tells us that second MCQs do exist forR andS
different from−px and−py , respectively, in particularω is still an MCQ in some cases—this
is by no means obvious. (Recall thatψ is always materially conserved.) One might argue
that the results from this example are somewhat artificial. In example 2.2 we considered a
perturbation based on the addition of Fickian diffusion to the 2D-Euler equations and found
that no second MCQ of second order (or lower) exists. Of course a second MCQ of higher-
order might exist, however, our aim is to find MCQs which are ofpracticaluse in constructing
analytical solutions of the (perturbed) 2D-Euler equations: it seems doubtful that solution
ans̈atze involving higher order MCQs wouldsimplify their solution.

2.2. The thermocline equations

We next use the isopycnal formulation of the thermocline equations, (1.10), to seek MCQs of
a modified thermocline system in which

y(BxByρρ − ByBxρρ)− BxBρρ = κy2Bρρρ (2.16)

whereκ is assumed constant. We have introduced a diffussive term into the equations.
Before doing so it is worth digressing briefly: what does this ‘vertical’ diffusion add to

the system and why choose this particular parametrization of diffusion? It is argued by Gent
and McWilliams (1990) that if one does not resolve small-scale motion (eddies) in a model of
ocean dynamics then, even if the model is adiabatic, density should not be preserved, i.e.,

Dρ

Dt
= K (2.17)

whereK is to be determined. Therefore our material derivative becomes

D

Dt
= u · ∇ρ +K

∂

∂ρ
∇ρ ≡ ∂

∂x
+
∂

∂y
(2.18)

andrequiring that potential vorticity is still a MCQ, from (1.1), (1.10a) and (1.11),(
−Bx
y

∂

∂x
+
By

y

∂

∂y
+K

∂

∂ρ

)
y

Bρρ
= 0. (2.19)

Expanding (2.19) and settingK = −κ yields (2.16).
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We now show that there are no materially conserved quantities of third order and below
except potential-vorticity, i.e., that for the dynamics described by (2.16) with (1.10a), the only
differential quantity of the form

q = Q(x, y, ρ, B,Bx, . . . , Byρρ, Bρρρ) (2.20)

satisfying (1.1), in which the material-derivative is given by (2.18), isq = Q(y/Bρρ) where
Q is arbitrary.

The appropriate part of the frame of (2.16) is the equation itself plus the three first-order
partial derivatives:

(BxxByρρ +BxBxyρρ − BxyBxρρ − ByBxxρρ)y − BxxBρρ − BxBxρρ = κy2Bxρρρ (2.21a)

(BxyByρρ +BxByyρρ − ByyBxρρ − ByBxyρρ)y
+BxByρρ − ByBxρρ − BxyBρρ − BxByρρ = 2κyBρρρ + κy2Byρρρ (2.21b)

(BxρByρρ +BxByρρρ − ByρBxρρ − ByBxρρρ)y − BxρBρρ − BxBρρρ = κy2Bρρρρ. (2.21c)

There are two significant points to note before beginning the computation. First, we can
use (2.16) to eliminateBρρρ in terms of other third-order and lower-order derivatives wherever
it appears, i.e., we may assume thatQBρρρ = 0 without loss of generality. Secondly, we can
use (2.21a) and (2.21b) to eliminate, say,Bxxρρ andByyρρ in terms of other derivatives ofB,
but we cannot use (2.21c): so doing would introduceBρρρρ which appears nowhere else as we
have takenQ to be independent ofBρρρ .

Substituting (2.20) into (1.1) and using (2.18) we obtain an equation whichQmust satisfy
for all functionsB (cf 2.5). SinceQ does not depend upon the fourth-order derivatives ofB

the coefficients of each of these in this equation must be zero. Making use of the frame of
(2.16) as just described then the coefficients ofBxxxx ,Bxxxy ,Bxxyy ,Bxyyy ,Byyyy ,Bxxxρ ,Bxxyρ ,
Bxyyρ andByyyρ are, respectively,

−By
y
QBxxx = 0 (2.22a)

−By
y
QBxxy = 0 (2.22b)

−By
y
QBxyy +

Bx

y
QBxxy = 0 (2.22c)

−By
y
QByyy +

Bx

y
QBxyy = 0 (2.22d)

Bx

y
QByyy = 0 (2.22e)

−By
y
QBxxρ = 0 (2.22f)

−By
y
QBxyρ +

Bx

y
QBxxρ − κQBxxy = 0 (2.22g)

−By
y
QByyρ +

Bx

y
QBxyρ − κQBxyy = 0 (2.22h)

Bx

y
QByyρ = 0 (2.22i)

(recall thatBxxρρ andByyρρ have been eliminated, andBρρρρ does not appear); the coefficients
of Bxyρρ , Bxρρρ andByρρρ are identically zero. From (2.22) we conclude that

QBxxx = QBxxy = QBxyy = QByyy = QBxxρ = QBxyρ = QByyρ . (2.23)
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It remains to determine the dependence ofQ onBxρρ and onByρρ , and of course the lower-order
derivatives ofB.

Since we now know thatQ depends on at most only two third-order derivatives ofB,Bxρρ
andByρρ , we know that the coefficients of all other third-order derivatives ofB must be zero.
Setting the coefficients ofBxxx , Bxxy , Bxyy , Byyy , Bxxρ , Bxyρ andByyρ each to zero we obtain
a system similar to (2.22) from which it is easy to show that

QBxx = QBxy = QByy = QBxρ = QByρ = 0. (2.24)

It remains to determine the dependence ofQ onBρρ .
Collecting results we have

−By
y

{
Qx +QBBx +QBxBxx +QByBxy +QBρBxρ +QBρρBxρρ

+
QBxρρ
yBy

[(BxxByρρ − BxyByρρ)y − BxBxρρ − BxxBρρ ]

}
+
Bx

y

{
Qy +QBBy +QBxBxy +QByByy +QBρByρ +QBρρByρρ

+
QByρρ
yBx

[(ByyBxρρ − BxyByρρ)y +BxyBρρ +ByBxρρ

+2BxByρρ − 2ByBxρρ − 2BxBρρ/y]

}
−κ
{
Qρ +QBBρQBxBxρ +QByByρ +QBρBρρ

+
QBρρ
κy2

[(BxByρρ − ByBxρρ)y − BxBρρ ]

}
.

(2.25)

Now, since we know thatQ depends on at most only one second-order derivative ofB, Bρρ ,
we know that the coefficients of all other second-order derivatives ofB must be zero. The
coefficients ofBxx , Bxy , Byy , Bxρ , Byρ are, respectively,

−By
y

{
QBx +

Q
By

(
Byρρ − Bρρ

y

)}
= 0 (2.26a)

−By
y

{
QBy −QBxρρ

Bxρρ

By

}
+
Bx

y

{
QBx +

QByρρ
Bx

(
Bρρ

y
− Byρρ

)}
= 0 (2.26b)

Bx

y

{
QBy +QByρρ

Bxρρ

Bx

}
= 0 (2.26c)

By

y
QBρ + κQBx = 0 (2.26d)

Bx

y
QBρ − κQBy = 0. (2.26e)

The solutions of (2.26d) and (2.26e) are easy to find and are inconsistent. We necessarily
conclude that

QBx = QBy = QBρ = 0 (2.27)

and then from (2.26a)–(2.26c) we find

QBxρρ = QByρρ = 0. (2.28)

Collecting results we have

−By
y
Qx +

Bx

y
Qy − κ

{
Qρ +QBBρ −QBρρ

BxBρρ

κy2

}
= 0. (2.29)
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Since we know thatQ does not depend on any first-order derivative ofB we know that the
coefficients of each must be zero. Hence, from the coefficients ofBx ,By andBρ , respectively,

Qy/y +BρρQBρρ /y2 = 0 (2.30a)

−Qx/y = 0 (2.30b)

−κQB = 0 (2.30c)

leaving

Qρ = 0. (2.31)

From (2.30b) and (2.30c) we conclude that

Qx = QB = 0. (2.31)

In summary: we have shown thatQ can depend on onlyy andBρρ . The general solution
of (2.30a) is

Q = Q(y/Bρρ) (2.32)

i.e., the only MCQ of third order or less admitted by (2.16) is potential vorticity (cf (1.11)).
We reach a similar conclusion to that at the end of section 2.1: if (exact) MCQs do exist for
our diffusive thermocline system they are probably not helpful as a solution ansatz.

3. Approximate MCQs

The analysis of the previous sections shows that whilst in some cases one can have success
in determining materially conserved quantities of, for example, diffusive systems, which one
can fruitfully use to construct exact solutions, it seems likely that more often than not one is
confronted with a perturbation for which one is not so fortunate. In this section we show how
one can ‘make fortune’ by considering quantitites which are nearly conserved. Specifically
we answer:

(1) Can one determine solutions of systems in which non-ideal effects are not negligible (but
small) from the solutions (obtained by means of MCQs) of systems in which they are?

As a consequence of the method used to answer this first question we are also able to indicate
how one may answer the related question:

(2) Sometimes one can integrate the relation obtained between the MCQs for any function
(e.g., that in example 3.1.). In other cases this is not the case (e.g., equation (1.12)) and
one would therefore like to be able to determine the function without integration of the
relation, by some systematic means. How can one do this?

Let us return to the thermocline system for illustration. In a real system modelled by the
thermocline equations diffusion, friction and other effects are present, and these may often be
represented by adding a term to the rhs of (1.10b), namely,

1

y
(BxByρρ − ByBxρρ)− 1

y2
BxBρρ = D (3.1)

whereD is a differential function ofB and is small except perhaps in boundary layers or
frontal regions. With non-ideal effects added the equation relatingq, B andρ, (1.12), no
longer satisfies—nor is implied by—the governing equations, or equivalently (3.1); it is only
approximately true. We generalize by supposing

q = y

Bρρ
= Q(B, ρ,X, Y ) X = δ1x Y = δ2y |δ1|, |δ2| � 1 (3.2)
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where we have introduced the ‘slow’ variablesX andY : we are assuming that the functional
relationship between the materially conserved quantities changes slowly with latitude and
longitude. Of course (3.2) is not in general consistent with (3.1)—if (3.2) is used to eliminate
the third-order terms in (3.1), whilst terms of O(1) identically cancel, terms of O(δ1) and O(δ2)

remain—these new terms balance the ‘new’ terms on the right, i.e., those represented byD, and
hence we obtain a differential constraint onQ the solution of which yields some information
about what the functionQ might be.

Before proceeding further we must justify (3.2). In the ideal case we know thatq is related
toB andρ by (1.12) and that, within a body of water from a particular source,Q is the same
everywhere. If we introduce diffusion into the system then (1.12) is no longer correct, however,
within a sufficiently small neighbourhood of the solution domain it is a good approximation.
Furthermore, it is a good approximation in all other sub-domains, albeit with a differentQ
and the difference depends upon (the size of)κ. Taking the limit in which these (tesselated)
sub-domains become small, this is precisely saying that

q = Q(B, ρ, α(x, κ), β(y, κ)). (3.3)

Now, α andβ are surely smooth functions of their respective arguments, i.e.,in coordinate-
space adding diffusion is a singular perturbation, but in ‘MCQ-space’ the perturbation appears
regular. Hence bothα(0, 0) andβ(0, 0) are constant and finite, so that—taking these constants
to be zero as we may do, without loss of generality—we may write

α(x, κ) = α11κx + α21κ
2x + α12κx

2 + · · ·
β(y, κ) = β11κy + β21κ

2y + β12κy
2 + · · · . (3.4)

If κ is small, as it is in the ocean interior, then we expect to neglect O(κ2) and higher-order
terms. It is not obvious how to justify neglecting the remaining terms of degree two and higher
in bothx andy—at least in the general case. However, if the terms generated on the lhs by the
‘slow’ variables balance the new terms on the rhs, i.e., they are of the same order, then surely
we are justified in this neglect. (Certainly we should not expect (3.2) to be the correct ansatz
for all D. We continue this discussion in section 4.)

We now show that ansätze of the form of (3.2) are successful if diffusion is added to both
the 2D-Euler equations and to the thermocline system described above.

3.1. Approximately conserved quantities: the 2D-Euler equations

If viscosity is not negligible then the 2D-Euler equations, (1.3), are usually modified by the
addition of diffusive terms giving (2.10). Combining these (and the zeroz-component equation)
into a single vector equation and taking the curl to obtain an equation for viscosity we find that
only thez-component is non-zero:

Dω

Dt
= (u · ∇)ω = −ν∇2ω (3.5)

i.e.,ω is no longer a MCQ, but is nearly materially conserved. The exact functional relationship
between the streamfunction and velocity, (1.6), no longer satisfies, nor is implied by, the
governing equations. Instead, following the ideas discussed above we suppose that

ω = F(ψ,X, Y ) X = νx Y = νy. (3.6)

Substituting (3.6) into (3.5) the O(1) terms cancel as expected and after using (1.4) the
remaining terms are

ψxFY − ψyFX = −∇2ω

= ψxxxx + 2ψxxyy +ψyyyy
= ∇2F + O(ν). (3.7)
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One now has the option of determining the flow by integrating (3.6) and (3.7) rather the
governing equations, (2.10).

Example 3.1.A classical problem which can be solved by our ideas is described by Batchelor
(1956, section 3). Suppose there exists a 2D, steady, laminar flow within a fixed circular
boundary at high Reynolds number. The inviscid equations, (1.3), are valid everywhere except
in a boundary layer. How can one determine the interior flow?

It is well known (e.g., Batchelor 1967) that the inviscid equations, (1.3), are not sufficient
to determine the velocity field with no-normal-flow boundary conditions applied—the vorticity
may vary arbitrarily from one streamline to another, i.e.,F remains free. (Within closed
streamlines imposing far-field conditions to fixF is not an option.) Batchelor makes use of
integral constraints and finds that within a closed streamline, away from boundaries (i.e., in
the region in which viscosity may be neglected), in the limit in whichν → 0 thenω = ω0,
constant, i.e., the fluid moves as a solid body. What happens if we make use of (3.7), and
considerν small, but not necessarily tending to zero?

Changing to plane-polar coordinates(r, θ) in whichu = (ur , uθ )and assuming rotational
symmetry, i.e.,ur = 0, then (3.5) becomes(

uθ

r

∂

∂θ

)
F(ψ) = ν ∂

∂r
∇2uθ . (3.8)

Following (3.6) we generalizeF(ψ)→ F(ψ,R,2), where(R,2) are ‘slow’ coordinates so
that ∂/∂θ → ∂/∂θ + ν∂/∂2 and∂/∂r → ∂/∂r + ν∂/∂R. Then using these in (3.8) theO(1)
terms yielduθr−1Fψψθ = 0 which is satisfied sinceψθ = ur = 0 and from theO(ν) terms we
find

uθ

r
F2 =

(
∂3

∂r3
− 1

r2

∂

∂r
+

1

r

∂2

∂r2

)
uθ = −∇2ω. (3.9)

Symmetry tells us to expectF2 = 0 hence integrating twice w.r.t.r we obtain the result

ω = ω1(R) ln(r) + ω0(R) (3.10)

where bothω1 andω0 are functions of integration. These may be found by matching the flow
within the nearly inviscid region to fully viscous flow outside, for example, matching bothω and
∂ω/∂r—of course to prevent a singularity occurring atr = 0 we obviously requireω1(0) = 0.
(In the limit in whichν → 0 then consistency with Batchelor’s result indicates thatω1 → 0
asν → 0, i.e.,ω1 appears to provide a correction term in the case in whichν is small, but not
tending to zero.)

Finally one can determineψ . Sinceψθ = 0 thenω = −∂2ψ/∂r2 − (1/r)∂ψ/∂r (cf
(1.5)). Hence integrating twice w.r.t.r we obtain

ψ(r) = c0(R) + c1(R) ln(r) + 1
4ω1(R)r

2[1− ln(r)] − 1
4ω0(R)r

2 (3.11)

wherec0 andc1 are functions of integration, andc1(0) = 0. Eliminatingr between (3.10) and
(3.11) givesF .

3.2. Approximately conserved quantities: the thermocline equations

Let us continue our analysis of the diffusive thermocline system described by (2.16) with
(1.10a). Following the ideas described above we suppose that the three quantities materially
conserved in the ideal case, (1.11), are approximately functionally related, i.e., (3.2) is valid.

As a practical focus for our ideas we will consider a particular problem which arises in
geophysical fluid dynamics. One might expect that the temperature in the world’s oceans
would decrease approximately linearly from the warm surface values to the abyssal values
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Figure 1. Characteristic temperature profiles in the worlds oceans: A = Atlantic, I = Indian, P =
Pacific; N = north, S = south. Below the top few tens or hundreds of metres in which the temperature
is roughly uniform (owing to turbulence) the temperature changes increasingly rapidly toward a
maximum gradient at a mid depth of about 800–1000 m. Below this the gradient decreases. In the
bottom 2 or 3 km the temperature is almost constant. (From Robinson and Stommel 1959.)

which are just above 0◦C. In fact this is far from what happens—see figure 3.1. The
question of what dynamics are responsible for this unexpected temperature profile has been
addressed by many authors (see Hood and Williams (1996) for a survey of authors). Our
approach is mathematically straightforward (given the ansatz) yet remarkably general—strong
boundary conditions may be satisfied in contrast to many earlier analytical attempts at this
so-calledthermocline problem. (For a detailed description of the thermocline problem and a
comprehensive survey of earlier publications see Hood and Williams (1996).)

We focus on the mathematics underlying the simplest model used to explain this: the
thermocline equations are a hyperbolic system (Huang 1988), hence assuming just one source
of fluid—so that thatQ is the same throughout the solution domain—and prescribing in-
flow boundary conditions from the surface one obtains a well-posed problem. In short, the
model suggests that the surface temperature field is advected downwards into the interior,
deformed by the (horizontal) velocity field and also modified by diffusion: this sets up the
unexpected temperature profile. This model is often calledventilated(e.g., Killworth 1987).
(The significance of diffusion is the subject of considerable debate.) Note that aside from areas
of ice formation or melting the greatest influence upon density in the ocean is temperature and
to a good approximation (Bryan and Cox 1972) one may assume they are linearly related.
Hence knowing the density field is equivalent to knowing the temperature field—of course
temperature increases upwards whilst density increases downwards.
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In a ventilation model addressing the thermocline problem it is usual to prescribe the
vertical velocity at the ‘surface’ (in flow)

wE(x, y) = 1

y
(BxByρ − ByBxρ) + O(κ) on z = Bρ = 0 (3.12)

and also the density field,

ρ = ρs on z = Bρ = 0. (3.13)

(These represent, implicitly, the true surface dynamics which are dominated by wind stress.wE

is negative (downwards) everywhere owing to the convergence of water at the surface acting
under the influence of (average) wind stress—Ekman pumping.) This region is assumed to
over-lie a region in which velocity is comparatively small—assumed negligible in the model.
Therefore we set

B = 0 on ρ = 0. (3.14)

(Choosing the zero isopycnal to be the bottom is without loss of generality because the
governing equations admit the point symmetryρ → ρ + ρ0, ρ0 an arbitrary constant.) The
question of prescribed eastern conditions is discussed in the examples below. Finally, since
the governing equations are hyperbolic the western, northern and sourthern boundaries are
passive.

We consider two examples. (Full analysis of each example leading to (plotted) solutions
of ocean velocity and density fields is beyond the scope of this paper. Rather, our aim is to
show that (3.2) will satisfy the dynamics and boundary conditions, is flexible and practicable,
and yields physical results, and in so doing answers the two questions posed at the beginning
of this section.)

Example 3.2.Generalized two-layer model ofthe ocean thermocline. Two-layer models are
the simplest attempt to represent the thermocline in ocean models: here one assumes two layers
in which the density (temperature) is uniform throughout, with a sharp change in density at
the interface. Salmon (1994) generalized this idea by making the ansatz,

q = Q(ρ) (3.15)

which is a special case of (1.12). (In fact there is good reason to believe that in some parts
of the ocean, particularly away from lateral boundaries, this is a good approximation to the
true state of the ocean, see Rhines and Young (1982).) Salmon prescribedQ. In this example
we address the question, what shouldQ be so that it is consistent with the dynamics (after
diffusion is added)?

Following (1.4) we generalize by supposing that

q = Q(ρ,X, Y ). (3.16)

In this example we may directly integrate our ansatz, (3.16), for any functionQ: we obtain

B(x, y, ρ,X, Y ) = yF(ρ,X, Y ) + ρb(x, y,X, Y ) + a(x, y,X, Y ) (3.17)

wherea andb are functions of integration, and

Fρρ = 1

Q
. (3.18)

Substituting (3.17) into (2.16)O(1) terms cancel as expected, and fromO(δ) andO(κ) terms
we find

(ρbx + ax)δ2FYρρ − (F + ρby + ay)δ1FXρρ = κyFρρρ. (3.19)

(We have not neglectedO(κ2) and similar terms—there are none.)
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We must interpret (3.19) carefully:a andb both depend uponx andy; F does not. We
find that necessarilyFXρρ = 0, so that

F = F(ρ, Y ) + ρf1(X, Y ) + f0(X, Y ) (3.20)

whereF , f0 andf1 are to be determined. Then comparison of (3.20) with (3.17) shows that
we may take bothf0 = f1 = 0 without loss of generality (by redefininga andb), i.e., we may
assume that

FX = 0 (3.21)

hence

(ρbx + ax)δ2FYρρ = κyFρρρ. (3.22)

Now, assumingFY 6= 0 we find

a(x, y, Y ) = xya11(Y ) + a0(y, Y )

b(x, y, Y ) = xyb11(Y ) + b0(y, Y ).
(3.23)

Given this constraint ona and b is not clear that the prescribed surface boundary
conditions can be satisfied, i.e., is our assumption, (3.16), incompatible with these? In fact one
can establish the existence ofa, b andF satisfying our (surface) boundary conditions given
some reasonable assumptions: suppose that

ρs = r00 + r10x + r01y + r20x
2 + · · ·

wE = e00 + e10x + e01y + x20x
2 + · · · (3.24)

and that

Fρρ = 8(ξ) =
∞∑
n=0

φnξ
n φn→ 0 as n→ 0 (3.25)

which are surely reasonable for physical solutions. Then expandingb0 in powers ofy, equating
coefficients of products of powers of bothx and y in both (3.13) and (3.12), one obtains a
linear algebraic system of equations forφn and the coefficients in the expansion ofb0. It is
easy to see from this that by keeping sufficient terms in the expansion of8 one can both satisfy
(3.13) and (3.12) to arbitrary degree in bothx and y, and (sinceφn → 0 asn → 0) that
remaining terms in both (3.13) and (3.12) can be made arbitrarily small. (Note, given (3.15)
one cannot prescribe bothwE andρs arbitrarily. First, substituting (3.17) into (3.12) we find
wE = b11y

−1(ρFρ − F +F(0)) so thatb11 is non-zero, i.e.,bx 6= 0. Then, substituting (3.17)
into (3.13) yieldsyFρ + b = 0 with ρ = ρs(x, y), so thatρs,x 6= 0. Secondly, (3.12) shows
that in factρs andwE are algebraically related—though this relation is not fixed.)

Given that solutions exist for prescribed boundary conditions one can will usually proceed
from (3.22) and (3.23) numerically, i.e., determineF from the boundary conditions which
include the ‘surface’ density field. In the context of Salmon’s model, however, one one does
not prescribe the surface density, instead one prescribesF . First we integrate (3.22). Using
(3.14) we find thatax = 0 and then the general solution is

Fρρ = 8(ξ) ξ = ρ2 + 2k
∫

dY

b11(Y )
k = κ/δ2. (3.26)

Since the perturbation inY is regular thenb11 = b110 + b111Y + O(Y 2), hence

ξ = ρ2 +
2kY

b110
+ O(Y 2) (3.27)

(we have set the constant of integration to zero w.l.o.g.).
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It is worth considering a simple, particular case to gain some physical intuition about
these solutions. Suppose

8 = φ0 + φ1ξ (3.28)

φ0 andφ1 being constants which are easily determined: in the limit in whichκ, and therefore
Y vanish we expect a front to appear (cf), i.e.,Fρρ = zρ = 0 on some isopycnal, and from
(3.26) with (3.28) this isopycnal is given byρ = √−φ0/φ1; thenφ1 gives the change in density
between the upper and lower regions—soφ0 andφ1 are the model parameters giving position
and size of jump in density between layers in the generalized two-layer model.

(In this example the subject of the eastern boundary condition was deliberately avoided:
the solution ansatz used cannot, in the context of the governing equations (2.16) with (1.10a),
satisfy a strong eastern boundary condition such as no flow throughx = 0 (choosingx = 0
as the eastern boundary w.l.o.g.), only weak, integral conditions can be satisfied. In his
generalized two-layer model Salmon (1994) uses modified governing equations.)

Example 3.3.A different approach to modelling the thermocline has been taken by Killworth
(1987). Killworth supposed that

Bρρ = yF(ρ)B (3.29)

a second special case of (1.12). This ansatz was chosen specifically to satisfy no-flow through
the eastern boundary at all latitudes and depths—one simply prescribes

B = 0 on x = 0. (3.30)

In order to make analytical progress Killworth supposed that

ρs,x = 0. (3.31)

From (3.13) we haveBρ(x, y, ρs(x, y)) = 0 and computing the first-order partial derivatives
of this w.r.t.x andy and using (3.31) we findByρ + ρs,yBρρ = 0 andBxρ = 0. Hence (3.12)
becomes

wE(x, y) = −1

y
ρs,yBxBρρ

= −ρs,yBxFB onρ = ρs(y). (3.32)

Integrating w.r.t.x one obtains an equation linkingB,F and the prescribed surface boundary
conditions. Solution yieldsB from which the velocity and depth fields can be found, by use of
(1.10a).

Can one make the same kind of analytical progress for the diffusive thermocline system,
with an ansatz similar to (3.29)?

Following (1.14), and in the light of (3.21), we suppose

Bρρ = yF(ρ, Y )B. (3.33)

We can use (3.33) to eliminate second-orderρ derivatives from (2.16): computing each of
the three first-order partial derivatives of (3.33) and eliminating the third-order derivatives of
(2.16) theO(1) terms vanish as expected and equating theO(δ) andO(κ) terms we find

BxFY = ky(FBρ +FρB) k = κ/δ. (3.34)

It remains to solve (3.33) simultaneously with (3.34). First, it turns out to be helpful to check
consistency of these two equations by means of a horizontal expansion: since our governing
equations contain only ‘vertical’ (no horizontal) diffusion we expect that solutions will be
smooth in bothx andy so we suppose

B(x, y, ρ, Y ) =
I∑
i=0

J∑
j=0

Bij (ρ, Y )x
iyj (3.35)
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whereBij (ρ, Y ) are to be determined. Substituting (3.35) into both (3.33) and (3.34) leads to
two recurrence relations forBij . It is not difficult to show by using these that physical solutions
exist only if

F = 1

ρ
8(ξ) ξ = 1

2
ρ2 + k

∫
dY

b11(Y )
= 1

2
ρ2 + kb̂11Y + O(Y 2) (3.36)

whereρb11(Y ) = B11(ρ, Y ) andb̂11 is constant (cf 3.26). Finally we can eliminateBx between
(3.34) and (3.32), and use (3.36) forF . We find

{(ρ28ξ −8)B + ρ8Bρ}yρs,y8B + b̂11ρ
2wE8ξ = 0 onρ = ρs(y). (3.37)

B and8 (and thereforeF) are now found by simultaneous solution of (3.33) and (3.37), a pair
of ordinary differential equations, which are subject to the bottom condition, (3.14), and the
surface conditions (3.12) and (3.13). (In fact one needs an additional ‘vertical’ condition—for
example one could specify the behaviour ofF asρ → 0.) Again the extra information gained
by making our ansatz based on MCQs of the ideal system is enough to determine the unknown
function. (In Killworth’s analysis solutions existed only forwE < 0. In our case solutions
apparently exist the casewE > 0 but it is not obvious that these will be physical since with
wE > 0 the density field is prescribed at an out-flow boundary of the solution domain.)

4. Discussion

Let us first return to the questions posed at the beginning of section 3. First, we have shown itis
possible to successfully construct solutions of non-ideal systems by supposing that a singular
perturbation in coordinate space is regular in MCQ-space: given a solution-ansatz based on
a functional relationship between exact MCQs of an ideal system one supposes that a similar
relationship holds for the non-ideal system, the difference being that the function is not the
same throughout the solution domain, rather it ‘slowly’ changes with each coordinate. The
solutions satisfy full boundary conditions. Secondly, in three cases we have shown that it is
possible to determine the function relating MCQs of an ideal system by supposing that such
a system is a limiting case of a non-ideal system. Whilst integral methods have been used
to address the same problem (Batchelor 1956, Rhines and Young 1982) these require closed
streamlines, the method introduced here does not.

When might the methods break down? First, if there are two (or more) sources of fluid.
Consider the thermocline problem described in section 3.2. We focused on ventilated models,
i.e., those in which water enters the solution domain from above. Alternative models suppose
that in addition there is upwelling from below and that water from the two sources meets ‘in the
middle’. To address this situation one would need to solve a ventilated problem in the upper
part of the solution domain, a similar (upsidedown!) problem in the lower part and match at
the interface. Care is neededat the interface: hereρz is at a maximum and thereforezρ is at
a minimum so thatzρρ = Bρρρ = 0, i.e., the rhs (non-ideal terms) of (2.16) vanishes—our
ansatz is therefore valid. However, if one adds Fickian diffusion to (1.8b), i.e., adds a rhs of
y−2κMzzzz (note this is a different parametrization to that given by (2.16)) then our ansatz is
probably not valid at the interface as this non-ideal term takes itsmaximumvalue there. (One
might consider an inner problem in which horizontal motion is neglected, (see Salmon (1990),
Hood and Williams (1996).)

Secondly, it is by no means obvious that our ansatz, or even a generalization of it, is
valid for all non-ideal effects. First, recall (3.4): we were by no means rigorous in choosing
α = κx andβ = κy. Indeed the author’s current work suggests that supposing, for example,
q = F(ρ, Y, Ŷ ), Y = κy, Ŷ = κ2y, leads to a useful second-order correction term in
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some problems (though such second-order terms had no place in the examples given above:
in each, O(1) terms cancelled and O(κ) terms provided a constraint—there were no O(κ2)

terms). Further, initially sticking with the general form forβ (andα) and letting the boundary
conditions play a role in setting the particular form may prove useful. However, for some rhs
a balance may be impossible to obtain. For illustration choose the rhs of (2.16) to be replaced
with κy2Byρρρ . The rhs now generates O(κ2) terms which are not balanced on the lhs. Even
supposingF(ρ, R, Y ), Y = β(κ, ρ), R = η(κ, ρ) one cannot obtain a balance. It seems that
this particular perturbation is singular, even in MCQ-space.

A next step is to continue with examples 3.2 and 3.3, applying realistic boundary
conditions. The author is currently pursuing these ideas, with a further generalised ansatz
which eliminates some of the restrictions found such as (3.23).

Here we have focused on the perturbation of steady, ideal systems by the addition of
diffusion and other non-ideal effects. Can one use methods similar to those introduced above
if the systems become unsteady, a particular case of adding an independent variable to the
system? (In the case of the ideal thermocline equations the Bernoulli functional,B, is no
longer materially conserved.) The author’s current work indicates that methods closely related
to those introduced abovewill be effective.

Acknowledgments

I thank Dr Chris Hughes and an anonymous referee for spotting an error in a draft version of
this paper.

References

Batchelor G K 1956 On steady laminar flow with closed streamlines at large Reynolds numberJ. Fluid Mech.1177–90
——1967An Introduction to Fluid Dynamics(Cambridge: Cambridge University Press)
Bryan K and Cox M D 1972 An approximate equation of state for numerical models of ocean circulationJ. Phys.

Oceanogr.2 510–14
Gent P R and McWilliams J C 1990 Isopycnal Mixing in Ocean Circulation ModelsJ. Phys. Oceanogr.20150–5
Hood S 1998 On using materially conserved quantities to construct solutions of differential equationsJ. Phys. A:

Math. Gen.323255–69
Hood S and R Williams 1996 On frontal and ventilated models of the main thermoclineJ. Mar. Res.54211–38
Huang R X 1988 On boundary value problems of the ideal-fluid thermoclineJ. Phys. Oceanogr.18619–41
Janowitz G S 1986 A surface density and wind-driven model of the thermoclineJ. Geophys. Res.915111–18
Killworth P 1987 A continuously stratified nonlinear ventilated thermoclineJ. Phys. Oceanogr.171925–43
Needler G T 1971 Thermocline models with arbitrary barotropic flowDeep-Sea Res.18895–903
Pedlosky J 1986Geophysical Fluid Dynamics(New York: Springer) 2nd edn
Rhines P B and W R Young 1982 A theory of wind-driven circulation. I: mid-ocean gyresJ. Mar. Res.40 suppl.

559–95
Robinson A and H Stommel 1959 The oceanic thermocline and the associated thermohaline circulationTellus11

295–308
Salmon R 1990 The thermocline as an internal boundary layerJ. Mar. Res.48437–69
——1994 Generalized two-layer models of ocean circulationJ. Mar. Res.52865–908
Welander P 1959 An advective model of the ocean thermoclineTellus11309–18
——1971 Some exact solutions to the equations describing an ideal-fluid thermoclineJ. Mar. Res.2160–8


